Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

30/11/20

CONTINUOUS INTERNAL EVALUATION- 2

Dept:EC Sub:Electromagnetic Waves S Code:18EC55 Sem / Div:V Date:03/12/2020 Time: Max Marks: 50 Elective:N 9:30-11:00 am

Note: Answer any 2 full questions, choosing one full question from each part.

Q N	Questions	Marks	RBT	COs
	PART A			
1 a State and exp	lain Uniqueness theorem.	8	L2	CO2
i)Two co-axia	2,3) for the field of, al conducting cylinders V=40 V at ρ=2m, V=20 V at ρ=4m ntric conducting spheres V=60 V at r=2m, V=30 V at r=5m	8	L3	CO2
c Derive the e equation.	xpression for capacitance of coaxial cable using Laplace's	9	L3	CO2
	OR			
2 a Derive the ex- conductor usi	expression for the magnetic field intensity due to finite long ng Biot Savart law.	8	L3	CO3
bEvaluate both the sides of Stoke's theorem for the field H=6xy a_x - $3y^2 a_y$ A/m and the rectangular path around the region, $1 < x < 4$, $-2 < y < 2$, $z=0$. Let the direction of ds be a_z		8	L3	CO3
c State and exp in differential	plain Ampere's Circuital law and also derive the Ampere's law form.	9	L2	CO3
	PART B			
3 a Derive Poisso all the coording	on's and Laplace's equation and express Laplace equation in nate systems.	8	L2	CO2
b If B=0.05xa _y T in a material for which χ=2.5 find I) μ _r ii) μ iii) H iv) M v) J vi) J _b		9	L3	CO3
c Derive expression for the force between 2 differential current element.		8	L2	CO3
	OR			
4 a State and explain Lorentz's Force equation.		8	L2	CO3
b Derive the magnetic boundary conditions between two dielectrics.		9	L3	CO3
$a_x=0.60a_x+0.7$ the charge by a) B=-3a _x +4a _y b)E=-2a _x +3a _y	y+6a _z mT +4a _z KV/m	8	L3	CO3
c) B and E ac	ting together			

Prepared by: Vinay P