Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi CRM08 Rev 1.10 30/11/20 ## CONTINUOUS INTERNAL EVALUATION- 2 Dept:EC Sub:Electromagnetic Waves S Code:18EC55 Sem / Div:V Date:03/12/2020 Time: Max Marks: 50 Elective:N 9:30-11:00 am Note: Answer any 2 full questions, choosing one full question from each part. | Q
N | Questions | Marks | RBT | COs | |---|---|-------|-----|-----| | | PART A | | | | | 1 a State and exp | lain Uniqueness theorem. | 8 | L2 | CO2 | | i)Two co-axia | 2,3) for the field of,
al conducting cylinders V=40 V at ρ=2m, V=20 V at ρ=4m
ntric conducting spheres V=60 V at r=2m, V=30 V at r=5m | 8 | L3 | CO2 | | c Derive the e equation. | xpression for capacitance of coaxial cable using Laplace's | 9 | L3 | CO2 | | | OR | | | | | 2 a Derive the ex-
conductor usi | expression for the magnetic field intensity due to finite long
ng Biot Savart law. | 8 | L3 | CO3 | | bEvaluate both the sides of Stoke's theorem for the field H=6xy a_x - $3y^2 a_y$ A/m and the rectangular path around the region, $1 < x < 4$, $-2 < y < 2$, $z=0$. Let the direction of ds be a_z | | 8 | L3 | CO3 | | c State and exp
in differential | plain Ampere's Circuital law and also derive the Ampere's law form. | 9 | L2 | CO3 | | | PART B | | | | | 3 a Derive Poisso
all the coording | on's and Laplace's equation and express Laplace equation in
nate systems. | 8 | L2 | CO2 | | b If B=0.05xa _y T in a material for which χ=2.5 find
I) μ _r ii) μ iii) H iv) M v) J vi) J _b | | 9 | L3 | CO3 | | c Derive expression for the force between 2 differential current element. | | 8 | L2 | CO3 | | | OR | | | | | 4 a State and explain Lorentz's Force equation. | | 8 | L2 | CO3 | | b Derive the magnetic boundary conditions between two dielectrics. | | 9 | L3 | CO3 | | $a_x=0.60a_x+0.7$
the charge by
a) B=-3a _x +4a _y
b)E=-2a _x +3a _y | y+6a _z mT
+4a _z KV/m | 8 | L3 | CO3 | | c) B and E ac | ting together | | | | Prepared by: Vinay P